Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Entwicklung eines Reinforcement Learning basierten Flugzeugautopiloten unter der Verwendung von Deterministic Policy Gradients
Sprache: Deutsch
Autorenschaft: Wagner, Stefan Sylvius 
Erscheinungsdatum: 14-Mai-2018
Zusammenfassung: 
Einer der schwierigsten Aufgaben im Reinforcement Learning ist die Regelung von Systemen in einem kontinuierlichen Zustandsraum und die anschließende Steuerung in einem kontinuierlichen Aktionsraum. In dieser Arbeit wird ein Reinforcment Learning basierter Flugzeugautopilot konzipiert und implementiert, der einen kontinuierlichen Zustandsraum approximiert und ein Flugzeug mit Aktionen in einem kon...

One of the most difficult challenges in reinforcement learning is the continuous control of systems in a continuous state and action space. This papers goal is to design and implement a reinforcement learning based airplane autopilot that controls an aircraft in continuous state and action space. Deterministic Policy Gradients define a framework for this purpose in the form of an actor-critic arch...
URI: http://hdl.handle.net/20.500.12738/8284
Einrichtung: Department Informatik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Bachelorarbeit
Hauptgutachter*in: Meisel, Andreas 
Gutachter*in der Arbeit: Fohl, Wolfgang 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
Bachelorarbeit_StefanSylviusWagner.pdf15.62 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.