Fulltext available Open Access
Title: Implementierung einer Tensor Processing Unit mit dem Fokus auf Embedded Systems und das Internet of Things
Other Titles: Implementation of a Tensor Processing Unit with focus on Embedded Systems and the Internet of Things
Language: German
Authors: Fuhrmann, Jonas
Keywords: Maschinelles Lernen;Tensor Processing Unit;FPGA;VHDL;Embedded Systems;Internet of Things;Computer Vision;Künstliche Intelligenz;Machine Learning;Tensor Processing Unit;FPGA;VHDL;Embedded Systems;Internet of Things;Computer Vision;Artificial Intelligence
Issue Date: 14-Dec-2018
Maschinelles Lernen findet immer mehr Anwendung in unserem Alltag, aber auch sicherheitskritische Systeme werden immer häufiger mit ML-Verfahren ausgestattet. Diese Arbeit gibt einen Einblick in die Realisierung eines Machine-Learning-Co-Prozessors für Embedded Systems und IoT-Geräte. Dabei wurde eine skalierbare Architektur mit Anlehnung an Google’s Tensor Processing Units umgesetzt. Kleinere Systeme können so mit diesem Beschleuniger ausgestattet werden und neben der parallelen Ausführung von ML-Modellen noch andere Echtzeitaufgaben übernehmen.

Machine learning is more and more applied in our everyday life, but also safety critical systems are increasingly equipped with ML procedures. This paper gives an insight into the implementation of a machine learning co-processor for embedded systems and IoT devices. A scalable architecture based on Google’s Tensor Processing Units was implemented.
This allows smaller systems to be equipped with this accelerator and to perform other real-time tasks in addition to the parallel execution of ML models.
URI: http://hdl.handle.net/20.500.12738/8527
Institute: Department Informatik 
Type: Thesis
Thesis type: Bachelor Thesis
Advisor: Tiedemann, Tim 
Referee: Meisel, Andreas 
Appears in Collections:Theses

Files in This Item:
File Description SizeFormat
thesis.pdf6.63 MBAdobe PDFView/Open
Show full item record

Page view(s)

checked on May 21, 2022


checked on May 21, 2022

Google ScholarTM


Note about this record


Items in REPOSIT are protected by copyright, with all rights reserved, unless otherwise indicated.