Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorRibberink, Natalia-
dc.contributor.authorFaust, Sven-
dc.date.accessioned2020-09-29T14:53:14Z-
dc.date.available2020-09-29T14:53:14Z-
dc.date.created2017-
dc.date.issued2018-12-21-
dc.identifier.urihttp://hdl.handle.net/20.500.12738/8552-
dc.description.abstractAfter decades of corporations from developed countries investing in developing economies, the contemporary business environment sees more and more enterprises from emerging markets that use FDI in developed countries themselves. Chinese investors in particular acquire unprecedented numbers of companies in Europe and especially Germany. This thesis examines the motives of such acquisitions and finds that these emerging country investors are driven by different incentives than their developed country counterparts. The same is true for the companies which are at the receiving end of FDI transactions so that e.g. German companies seek foreign capital for very different reasons than Chinese ones. At the centre of the analysis lies a predictive model which has the purpose of forecasting the probable outcome of a new Sino-German FDI transaction based on the experiences made with past cases. The dataset collected for this purpose reveals that small German companies of the metals industry located in the East of Germany have the highest risk of performing poorly under a Chinese investor. Companies of the automotive industry located in the North on the other hand have positive prospects in case they come under Chinese ownership. For the success-predicting model itself the statistical tool of linear discriminant analysis is chosen and applied in such a way that it can measure the economic success of a transaction based on both the acquired company’s general features and ability to absorb externally provided assets. In order to make this statistical analysis an easily accessible tool for any user, a dashboard-style application is created. It has an interface that allows easy input of the data required for the analysis and presents its results in a fashion that makes it directly usable in a potential FDI decision.en
dc.language.isoenen_US
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subjectchinese investorsen_US
dc.subjectoutward foreign direct investmenten_US
dc.subjectabsorptive capacityen_US
dc.subjecthost country externalitiesen_US
dc.subjectsuccess prediction modelen_US
dc.subject.ddc330: Wirtschaften_US
dc.titleChinese OFDI in German companies: an analysis of host country externalities and development of a success-predicting model based on host country company absorptive capacityen
dc.typeThesisen_US
openaire.rightsinfo:eu-repo/semantics/openAccessen_US
thesis.grantor.departmentDepartment Wirtschaften_US
thesis.grantor.departmentFakultät Wirtschaft und Sozialesen_US
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionHochschule für angewandte Wissenschaften Hamburgen_US
tuhh.contributor.refereeGille, Michael-
tuhh.gvk.ppn1043832947
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-85547-
tuhh.note.externpubl-mit-pod
tuhh.note.intern1
tuhh.oai.showtrueen_US
tuhh.opus.id4479
tuhh.publication.instituteDepartment Wirtschaften_US
tuhh.publication.instituteFakultät Wirtschaft und Sozialesen_US
tuhh.type.opusMasterarbeit-
dc.subject.gndFirma
dc.subject.gndChina
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersionen_US
dc.type.thesismasterThesisen_US
dcterms.DCMITypeText-
tuhh.dnb.statusdomain-
item.grantfulltextopen-
item.creatorGNDFaust, Sven-
item.cerifentitytypePublications-
item.creatorOrcidFaust, Sven-
item.advisorGNDRibberink, Natalia-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.fulltextWith Fulltext-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
2017_Faust_schw.pdf9.86 MBAdobe PDFÖffnen/Anzeigen
5 2017_Faust_Success-predicting Model.xlsx18.11 kBMicrosoft Excel XMLÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

294
checked on 03.04.2025

Download(s)

230
checked on 03.04.2025

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.