Volltextdatei(en) in REPOSIT vorhanden Open Access
DC ElementWertSprache
dc.contributor.advisorSchiemann, Thomas-
dc.contributor.authorHristova, Evelin Vladislavova
dc.date.accessioned2020-09-29T15:02:44Z-
dc.date.available2020-09-29T15:02:44Z-
dc.date.created2017
dc.date.issued2019-04-26
dc.identifier.urihttp://hdl.handle.net/20.500.12738/8696-
dc.description.abstractAutomated segmentation of medical image data is an important, clinically relevant task as manual delineation of organs is time-consuming and subject to inter- and intraobserver uctuations. This thesis builds upon a framework for segmentation of multiple organs in three-dimensional images. The approach employs a supervised recognition, where a training set with dense organs annotations is used to classify voxels in unseen images based on similarity of binary features extracted from the data. A combination of two di erent types of feature vectors is used to capture relevant structural and contextual information. The binary vectors are constructed by multiple pairwise intensity comparisons. Hence, the method is invariant to monotonic gray-level changes and can be applied to di erent imaging modalities or anatomies. The fast approximate nearest neighbor search, using Vantage Point Forests, does not require any explicit prior shape model knowledge and allows computationally e cient binary data classi cation. Training the algorithm takes several minutes, while segmenting a test image is in the order of a few seconds. The method is successfully applied to 68 CT abdominal and 42 MR pelvic images. With respect to ground truth, an average Dice overlap score of 0:74 for the CT segmentation of liver, spleen and kidneys is achieved. The mean score for the MR delineation of bladder, bones, prostate and rectum is 0:65. The results demonstrate surprisingly accurate segmentation, robustness and data-e ciency.en
dc.language.isoenen
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/-
dc.subject.ddc570 Biowissenschaften, Biologie
dc.title3D Medical Image Segmentation with Vantage Point Forests and Binary Context Featuresen
dc.typeThesis
openaire.rightsinfo:eu-repo/semantics/openAccess
thesis.grantor.departmentDepartment Medizintechnik
thesis.grantor.placeHamburg
thesis.grantor.universityOrInstitutionHochschule für angewandte Wissenschaften Hamburg
tuhh.contributor.refereeNickisch, Hannes-
tuhh.gvk.ppn1663681449
tuhh.identifier.urnurn:nbn:de:gbv:18302-reposit-86984-
tuhh.note.externpubl-mit-pod
tuhh.note.intern1
tuhh.oai.showtrueen_US
tuhh.opus.id4718
tuhh.publication.instituteDepartment Medizintechnik
tuhh.type.opusMasterarbeit-
dc.subject.gndBildsegmentierung
dc.subject.gndBildverarbeitung
dc.subject.gnd3D-Technologie
dc.type.casraiSupervised Student Publication-
dc.type.dinimasterThesis-
dc.type.drivermasterThesis-
dc.type.statusinfo:eu-repo/semantics/publishedVersion
dc.type.thesismasterThesis
dcterms.DCMITypeText-
tuhh.dnb.statusdomain-
item.creatorGNDHristova, Evelin Vladislavova-
item.fulltextWith Fulltext-
item.creatorOrcidHristova, Evelin Vladislavova-
item.grantfulltextopen-
item.cerifentitytypePublications-
item.advisorGNDSchiemann, Thomas-
item.languageiso639-1en-
item.openairecristypehttp://purl.org/coar/resource_type/c_46ec-
item.openairetypeThesis-
Enthalten in den Sammlungen:Theses
Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
thesis.pdf8.33 MBAdobe PDFÖffnen/Anzeigen
Zur Kurzanzeige

Seitenansichten

167
checked on 27.12.2024

Download(s)

74
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.