Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Model Predictive Controller Tuning in Electrical Distribution Grids by Multiobjective Optimization
Sprache: Englisch
Autorenschaft: Richter, Jörg Michael Dietrich 
Erscheinungsdatum: 5-Sep-2019
Zusammenfassung: 
In this thesis a multiobjective tuning of a linear state signal shaping model predictive control (LSSSMPC) controller is implemented in an electrical distribution grid to provide power quality services. The tuning is done using the evolutionary algorithm Multiobjective Differential Evolution with Spherical Pruning X (spMODEx). Two research questions are addressed. In the first stage the reproducibility of the spMODEx algorithm, when approximating the Pareto Front, as the solution to the multiobjective problem statement, is addressed. The assessment is realized by means of singular value decomposition, and additionally by a novel approach the activated volume method, first reported herein. In the second stage a decision making strategy is developed to find the best controller parameters in a reasonable amount of time. Controller and plant are operated in a mismatch. The controller operates on a conventional linear state space model, while the plant simulation is done by a four mode switched system to adequately model the behavior of non–linear loads. The thesis concludes with the outcomes on the reproducibility of spMODEx algorithm, the activated volume method, and recommendations for a successful multiobjective optimization and decision making process to ensure tuning parameters that allow the LSSSMPC controller to provide optimal power quality services.
URI: http://hdl.handle.net/20.500.12738/8845
Einrichtung: Fakultät Life Sciences 
Department Umwelttechnik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Masterarbeit
Hauptgutachter*in: Lichtenberg, Gerwald  
Gutachter*in der Arbeit: Pangalos, Georg 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
RichterJoerg_geschwaerzt.pdf3.81 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.