Volltextdatei(en) in REPOSIT vorhanden Open Access
Lizenz: 
Titel: Performance Optimization of Bifacial Module PV Power Plants Based on Simulations and Measurements
Sprache: Englisch
Autorenschaft: Guari Borrull, Miriam 
Erscheinungsdatum: 10-Okt-2019
Zusammenfassung: 
In contrast to monofacial photovoltaic (PV) systems, bifacial PV systems are able to harvest sunlight from both front and rear side, hence increasing the generated energy yield. The biggest contribution to the additional generated energy comes from the ground reflected irradiance, which depends on the module installation design. In this work, the optimum geometry of system design for bifacial PV power plants is found. For this objective, the individual and combined effect of the installation parameters on the energy yield of bifacial were studied through simulations and measurements. To empirically validate the used simulation model, measurements for different tilt angles were carried out and compared with the simulation results. In addition, a compilation of published data of the bifacial gain for bifacial PV plants with different system design geometry was done.
Analyzing the variance of the results of the simulations, it was found that the parameter that has the biggest contribution on the bifacial gain in energy (BGE) is the reflection of the ground surface. To study this effect, short-term measurements for different reflecting surfaces are carried out and compared with calculations based on the view factor. It was found that the BGE is directly dependent on the albedo of the surface by a factor of 0.40. Carried out simulations yielded bifacial gains of up to 30 % for a stand-alone module. For big scale power plants with a distance between rows of 2.3 m, bifacial gains of 4 % were yielded and by using a white reflective cover underneath the modules, BGE could be increased up to 8 %. It was also found that modules in large scale systems generate comparably lower energy levels up to 12 % less bifacial gain in comparison to neighboring modules due to large shadowing areas.
URI: http://hdl.handle.net/20.500.12738/9131
Einrichtung: Department Umwelttechnik 
Dokumenttyp: Abschlussarbeit
Abschlussarbeitentyp: Masterarbeit
Hauptgutachter*in: Kampschulte, Timon 
Gutachter*in der Arbeit: Scherl, Armin 
Enthalten in den Sammlungen:Theses

Dateien zu dieser Ressource:
Datei Beschreibung GrößeFormat
GuariBorullMiriamMA_geschwaerzt.pdf4.44 MBAdobe PDFÖffnen/Anzeigen
Zur Langanzeige

Seitenansichten

594
checked on 27.12.2024

Download(s)

2.402
checked on 27.12.2024

Google ScholarTM

Prüfe

HAW Katalog

Prüfe

Feedback zu diesem Datensatz


Alle Ressourcen in diesem Repository sind urheberrechtlich geschützt.